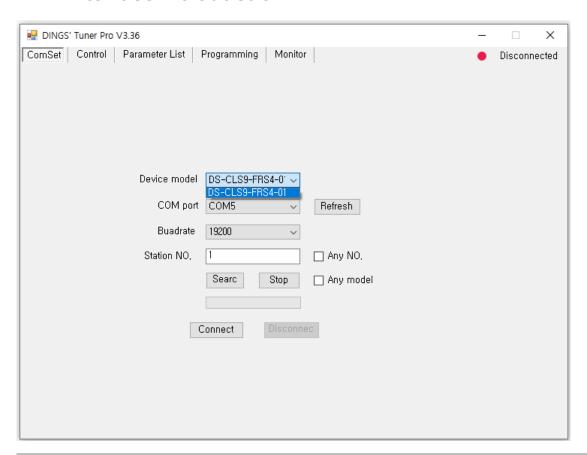


# Force Control Version Technical Guide Line

**DINGS' Simple Tuner Pro** 






## **Table of Contents**

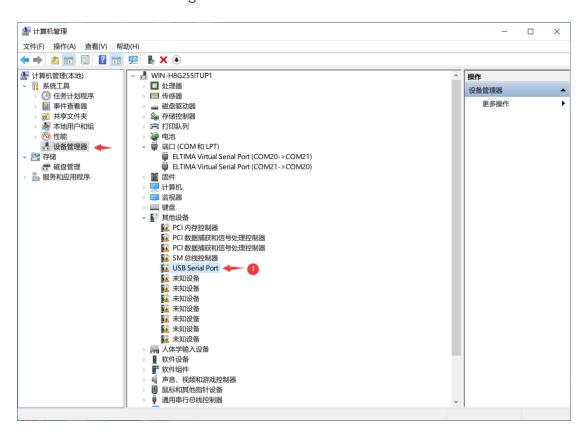
| 1. | Co  | Communication Setting Introduction |                                                    |    |  |
|----|-----|------------------------------------|----------------------------------------------------|----|--|
|    | 1.1 | Interfa                            | ce Introduction                                    | 3  |  |
|    | 1.2 | Conne                              | ction Preparation                                  | 4  |  |
|    |     | 1.2.1                              | Driver Installation                                | 4  |  |
|    |     | 1.2.2                              | Connection Parameter Setting                       | 6  |  |
| 2. | Dev | ice Mo                             | nitoring Interface                                 | 7  |  |
|    | 2.1 | Interf                             | ace Introduction                                   | 7  |  |
|    | 2.2 | Instru                             | ctions for Operation                               | 8  |  |
|    |     | 2.2.1                              | Product Information and Equipment Testing          | 8  |  |
|    |     | 2.2.2                              | Basic Setting and Operating Parameters and Control | l8 |  |
|    |     | 2.2.3                              | Input Port and Output Port Configuration           | 12 |  |
| 3. | Par | ameter S                           | Setting Interface                                  | 13 |  |
|    | 3.1 | Interfa                            | ace Introduction                                   | 13 |  |
|    | 3.2 | Paran                              | neter Introduction                                 | 13 |  |
| 4. | Mul | ti-axes (                          | Operation Interface                                | 15 |  |
|    | 4.1 | Multi-                             | axes Function Introduction                         | 15 |  |
|    | 4.2 | Multi-                             | Paragraph Writing                                  | 15 |  |
|    | 43  | Selec                              | tion of Multi-axes Number                          | 16 |  |



## 1. Communication Setting Interface

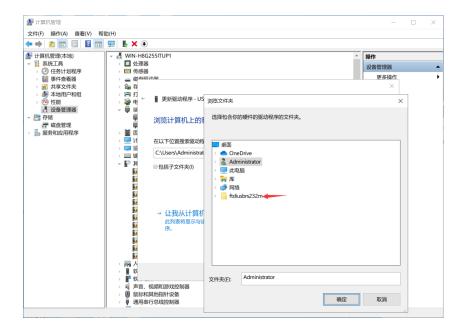
## 1.1 Interface Introduction



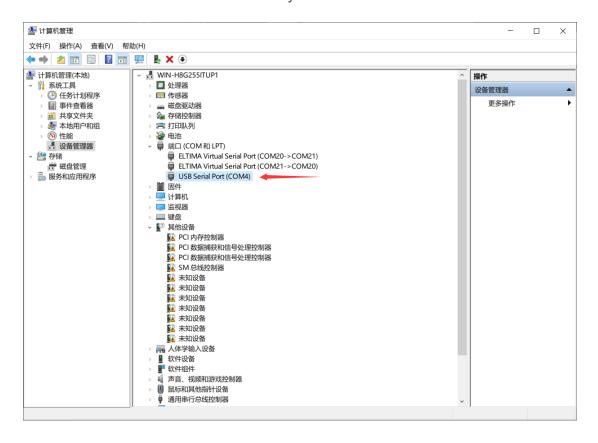

| No. | Function                                                                                                  | Remark |
|-----|-----------------------------------------------------------------------------------------------------------|--------|
| 1   | Select the device model, that is, select the connected driver model                                       |        |
| 2   | Select the serial port, it needs to be installed the driver when using the module to connect to the motor |        |
| 3   | Select the serial port Buad rate, the default is 19200                                                    |        |
| 4   | Select the station number, the default is 1                                                               |        |
| 5   | Station search, you can search when there is only one driver connected and the station is not confirmed   |        |
| 6   | Connect and disconnect                                                                                    |        |



## 1.2 Connection Preparation


#### 1.2.1 Driver Installation

Right-click on My Computer-Manage, open the computer management interface, and select Device Manager.




A USB Serial Port such as ① will appear in other devices, right click on the driver, select Browse of my computer to find the driver, click Browse, select the driver folder, confirm and click Next, the driver installation is complete.





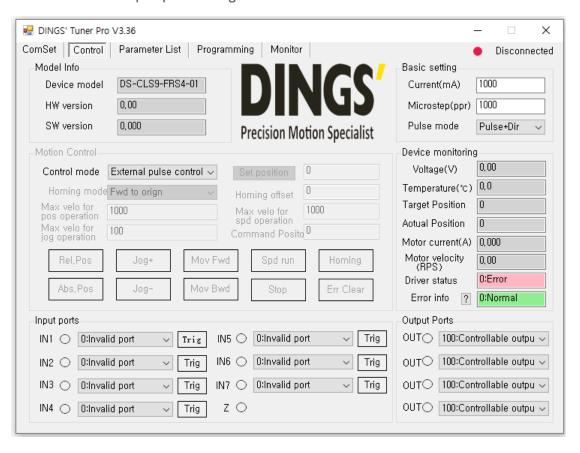
After the driver is installed successfully, you can see USB Serial Port under the port option, then the driver is installed successfully.





## 1.2.2 Connection Parameter Setting

Select the device model, the device model should be match with the connected driver model, and then select the serial port, which is the extra serial port of the computer after the device is connected. If you open the serial port module that the software is connected to first, you need to press the refresh button and restart Read the serial port, and then select the correct serial port. Then select the serial port baud rate, the default baud rate is 19200, just select it directly. The last one is the station number and usually defaults to 1. if no need to change, you just need to check it.


After all verification is done, click "Connect", and then the software screen moves to the device monitoring interface.



## 2. Device Monitoring Interface

### 2.1 Interface Introduction

The equipment monitoring interface is mainly divided into 6 parts, product information, operating parameters and control, input port configuration, basic settings, equipment detection and output port configuration.



| No.                                          | Function                                                          |
|----------------------------------------------|-------------------------------------------------------------------|
| 1                                            | Display of driver's basic information                             |
| 2                                            | Setting of motion parameter, basic control and alarm cancellation |
| 3                                            | Setting of input port configuration and software trigger          |
| 4 Setting of running subdivision and current |                                                                   |
| 5                                            | Display the current status of the device                          |
| 6                                            | Setting of output port configuration                              |



## 2.2 Interface for Operation

## 2.2.1 Product Information and Equipment Testing

These two parts are both display parts. Product information will be automatically read when connected, and the device detection will continuously update to realize the real-time parameters of the device, including the real-time status of the motor such as the bus voltage, drive temperature, etc.

## 2.2.2 Basic Settings and Operating Parameters and Control

The first is to set the current setting and the subdivision setting. The value of the current setting should be match with the motor current. The subdivision setting determines the number of pulses per revolution of the motor. Normally no need the setting change after the first setting. Then there are several parameters and corresponding functions.



| No. | Control button                                                             | Function                                                                                                         |
|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1   | Relative position, Absolute position, Move Forward, Move Backward          | Set position mode speed unit (0.01rps) is not related with subdivision                                           |
| 2   | Jog forward,<br>Jog backward                                               | Jog mode setting                                                                                                 |
| 3   | Position setting                                                           | Click the set position to replace the actual position with the value in the box                                  |
| 4   | Homing                                                                     | Set the origin offset, the pulse input in the additional motion box after the end of the return to origin motion |
| 5   | Constant speed mode                                                        | Set speed mode of speed                                                                                          |
| 6   | Relative position,<br>Absolute position,<br>Move Forward,<br>Move Backward | Set the number of pulses to run                                                                                  |



The main concern is the speed of several movements, the units are all 0.01rps, no need to calculate the subdivision, it is directly calculated the number of laps per second.

The specific position of the motion needs to reference the command position and the actual position, the motor without encoder cannot display the actual position and always shows 0, but the motor with the encoder shows the actual position.

The operation of all buttons will modify the command position. In the closed loop mode, the command position will always remain equal to the actual position. The deviation that may occur in the open loop mode, the default command position after power-on is 0, which is the default origin. The relationship between the command position and the subdivision is as follow: The subdivision is set for one pulse to run for one revolution. For example, when the subdivision is set to 1000, when the command position is 1000, the motor rotates one revolution in the forward direction. And when the command position is -1000, the motor runs one circle in reverse direction.

Then there is the control mode, the internal pulse control is to directly control the motor through the drive, and you can directly use the ten buttons on the software interface to control the motor. Button functions are as follows:



| No.         | Data Reference                                 | Function                                                                                                                                                                                                             |
|-------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Rel. Pos | Position mode speed Number of operating pulses | The command position increases the number of operating pulses.  The actual motor movement (subdivision setting/running pulse number) circle, with sign, reverse movement when the operating pulse number is negative |
| 2. Abs. Pos | Position mode speed Number of operating pulses | Setting the command position as the number of operating pulses, and the motor will run to the command position                                                                                                       |
| 3. Jog +    | Jog mode speed                                 | Press and hold to move forward at the speed of the jog mode                                                                                                                                                          |
| 4.Jog -     | Jog mode speed                                 | Press and hold to move backward at the speed of the jog mode                                                                                                                                                         |
| 5. Mov Fwd  | Position mode speed Number of operating pulses | Same as relative position (No.1)                                                                                                                                                                                     |



| 6.Mov Bwd    | Position mode speed Number of operating pulses | The command position increases the number of operating pulses.  The motor actually moves in the reverse direction (subdivision setting/operating pulse number) circle, with sign, when the running pulse number is negative, it moves in the positive direction |
|--------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.Spd run    | Speed mode speed                               | Operate according to the speed of the speed mode, the command position is automatically increased according to the subdivision                                                                                                                                  |
| 8.Stop       | Stop                                           | Operation stop while operating                                                                                                                                                                                                                                  |
| 9.Homing     | Homing                                         | Homing mode, which will be explained separately below                                                                                                                                                                                                           |
| 10.Err Clear | Error Clear                                    | Checking the cause of alarm when there is an alarm                                                                                                                                                                                                              |

The operating logic of the Homing mode is shown in Figure 2.1 for Forward Homing and Figure 2.2 for Reverse Homing.

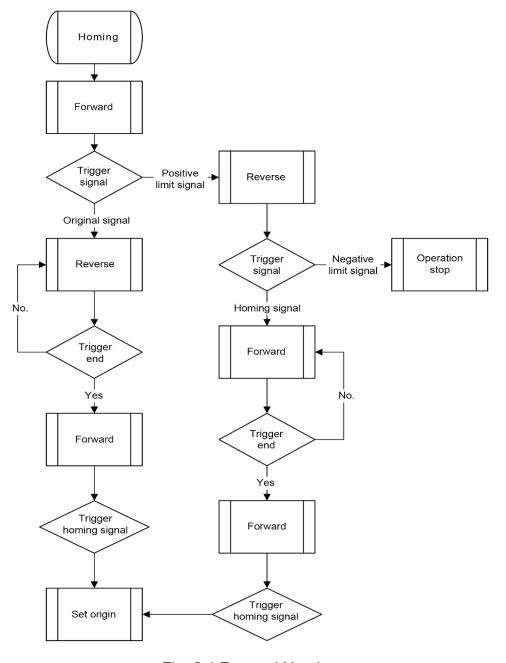



Fig. 2.1 Forward Homing



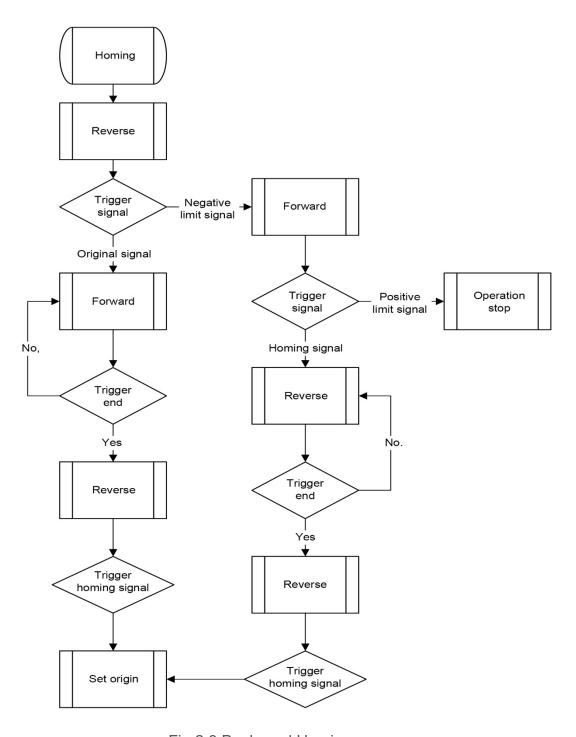



Fig 2.3 Backward Homing



## 2.2.3 Input Port and Output Port Configuration

Through the input port configuration, simple control can be realized through external triggering. The functions with the same name as the above button in the drop-down list will not be repeated, mainly the functions not mentioned above.

The first is the input port configuration.

| Function No. | Function                                                             | Remark     |
|--------------|----------------------------------------------------------------------|------------|
| 0            | Port invalidation, no action                                         |            |
| 7            | Make port stop quickly, faster than deceleration stop                |            |
| 9            | Trigger positive limit signal                                        | Use Homing |
| 10           | Trigger negative limit signal                                        | Use Homing |
| 16           | Start multi- axes operation                                          |            |
| 17           | Pause multi- axes operation                                          |            |
| 18           | Stop multi- axes operation                                           |            |
| 20           | The motor is offline when triggered and restarts when not triggered. |            |
| 25           | Multi-axes bit0 input                                                |            |
| 26           | Multi-axes bit1 input                                                |            |
| 27           | Multi-axes bit2 input                                                |            |
| 28           | Multi-axes bit3 input                                                |            |
| 29           | Multi-axes bit4 input                                                |            |

The multi-axes bit input of 25-29 is described in the following multi-axes unified description.

Then the output port configuration

| Function No. | Function                                                   | Remark |
|--------------|------------------------------------------------------------|--------|
| 100          | General output, can be triggered by parameter modification |        |
| 101          | Triggered in no alarm state                                |        |
| 102          | Positioning complete trigger                               |        |
| 103          | Trigger when the control is enabled and offline            |        |
| 104          | invalid                                                    |        |



## 3. Parameter Setting Interface

## 3.1 Interface Introduction

The parameter setting interface is mainly to adjust the motion parameters and import parameters in batches. Most of the parameters are matched by our engineers. This part mainly describes the parameters that are commonly used and need to be modified in the parameter setting interface and how to import and export parameters.

## 3.2 Parameter Introduction

The main parameters that need to be used are as follows

| Classification          | Address | Function                         |
|-------------------------|---------|----------------------------------|
| Basic parameter setting | 298     | Serial port baud rate            |
| Basic parameter setting | 299     | Slave station number             |
| Input port logic        | 429     | Input port logic                 |
| Output port settings    | 428     | Universal digital output control |
| Output port logic       | 430     | Output port logic                |

The serial port bit rate is the serial port baud rate on the connection interface. The default is 19200. If you need to change it, you can manually change it, but it should not exceed the online support of the driver.

The slave station number corresponds to the station number on the connection interface. The 485 bus can be connected to many devices at the same time, and the communication is carried out through the modbus protocol. The station number of each machine should be unique. At this time, the station number needs to be modified to achieve multiple Access and control of equipment.

The input port logic can change the trigger logic of the input port. The input range is 0-65535, where bit0-bit6 correspond to in1-in7 respectively. When the corresponding bit data is 1, the logic of the input port is reversed. Here is an example, When the address 429 (input port setting) data is 1, then bit0=1, then in1 logic is reversed, the default trigger, when there is a signal input, the trigger ends.



| IN1 | IN2 | <br>IN7 | Data |
|-----|-----|---------|------|
| 0   | 0   | <br>0   | 0    |
| 1   | 0   | <br>0   | 1    |
| 0   | 1   | <br>0   | 2    |
| 1   | 1   | <br>0   | 3    |
|     |     |         |      |
| 1   | 1   | <br>1   | 127  |

The modification of the output port logic is the same as the input port logic, so it will not be explained in details here.

The universal digital output control corresponds to the universal digital output. When the universal output is set in the output port configuration, the output can be directly controlled by the data of this address. The input range is 0-15, and the data bit0-bit3 correspond to out1-out4 respectively. Here is an example where when the data at address 428 (universal digital output control) is 1, bit0=1 and out1 outputs high. Voltage flat in normal output mode.

| OUT1 | OUT2 | OUT3 | OUT4 | Data |
|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    |
| 1    | 0    | 0    | 0    | 1    |
| 0    | 1    | 0    | 0    | 2    |
| 1    | 1    | 0    | 0    | 3    |
|      |      |      |      |      |
| 1    | 1    | 1    | 1    | 15   |

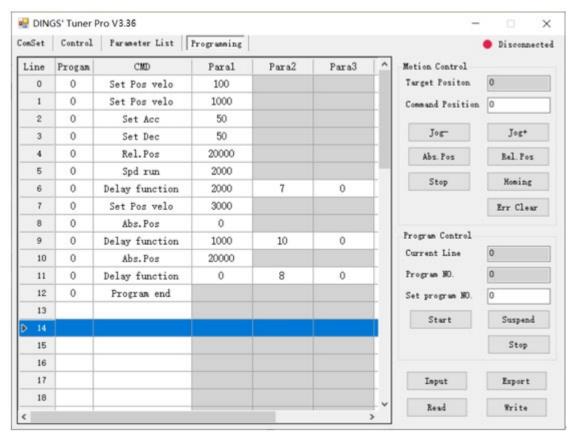


## 4. Multi-axes Operation Interface

### 4.1 Multi-axes Function Introduction

The multi-axes position mode function is to combine multiple position axes in a certain order, trigger movement through an external IO signal, and complete a series of position axes actions. This function can be regarded as a multi-axes combination of the position mode. The user can store the description parameters of several position axes, such as acceleration/deceleration, pulse number, etc., in the EEPROM in advance. When these position axes need to be enabled, only one trigger operation finish signal is required.

## 4.2 Multi-paragraph Writing


Multi-axes function can write multiple paragraphs, each paragraph can be set to its own movement, up to 16 paragraphs, each paragraph must end with the end of the paragraph to be triggered normally.

The content of the paragraph can be arbitrarily arranged. First, pull down in the command bar and select the instruction you need. Most instructions only have one parameter and you can enter the corresponding parameter. Here we will talk about the delay jump and speed mode separately.

The first digit of the delayed jump is fixed in ms. delay time unit, the second number is the jump line number, and the third number is fixed at 0, but when using delayed jumps, it should be set 1ms. of delay time at least. otherwise, it won't work properly.

The constant speed mode runs at the set speed, and the running time can be set by connecting a delay jump at the back. Here is an example.

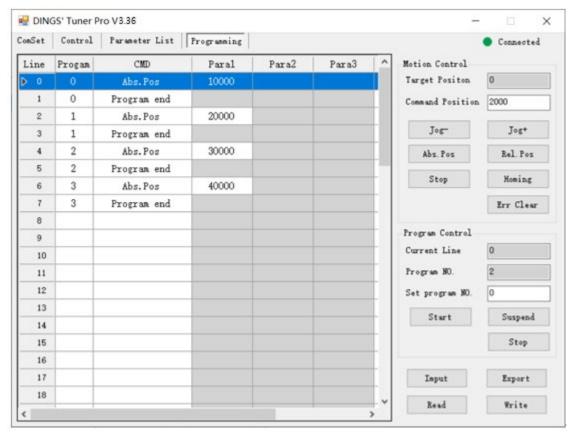




This is multi-axes operation window. Lines 0-3 set operating parameters. Line 4 executes a relative motion for 20000, then line 5 starts executing at a rate of 2rps, sets line 6 to run for 2 seconds, then jumps to line 7. line, then the 8th line resets the position velocity to 3rps, the absolute position runs to 0 at a rate of 3rps, then the ninth line delays 1 second, jumps to the 10th line, and the absolute position runs to 20000 runs. Jump to line 8 with a line 11 delay of 1 second and continue looping. The end of line 11 of a paragraph marks the end of multiple paragraphs.

## 4.3 Selection of Multi-axes Number

C


Multi-axes number selection is based on multi-axes bits. Multi-axes bits need to be entered through the input port. Multi-segment bits have a total of 4 bits, all of which are 0 by default. It can be set a multi-segment bit on the input port and then trigger by the input. Here is the multi-axes bit and multi-axes selection relationship.

| Bit0 | Bit1 | Bit2 | Bit3 | Bit4 |
|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    |
| 1    | 0    | 0    | 0    | 0    |
| 0    | 1    | 0    | 0    | 0    |
| 1    | 1    | 0    | 0    | 0    |
|      |      |      |      |      |
| 1    | 1    | 1    | 1    | 1    |



For example, when bit 1 is high level, the number of axes is chosen as 2. At this time, if multi-axes start is enabled, the multi-segment with segment number 2 is executed.





In this case, when you click to start multi-axes, the absolute position of the number 2 starts and runs up to 30000.



# International Customer

Person in Charge:

Daniel Jang

daniel@dingsmotion.com

No. 2850 Luheng Road, Changzhou Economic Development Zone, Jiangsu Province, China

+86-519-85177825, 85177826

# North America Customer

Person in Charge:

Nicolas Ha

sales@dingsmotionusa.com

335 Cochrane Circle Morgan Hill, CA 95037

+1-408-612-4970

#### China

#### Customer

Person in Charge:

Sweet Shi

#### info@dingsmotion.com

No. 2850 Luheng Road, Changzhou Economic Development Zone, Jiangsu Province, China

+86-519-85177825, 85177826





+86-0519-8517 7825



+86-0519-8517 7807



No. 2850 Luheng Road, Changzhou Economic Development Zone, Jiangsu Province, China



www.dingsmotion.com

It is prohibited to copyright or replication of the part or whole of user manual without permission.